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ON DIAGONALIZATION METHODS IN INTEGER PROGRAMMING 

by Richard Van Slyke and Roger Wets 

I.    Introduction 

An important area for improvement in existing integer programming 

codes is in the easy generation of efficient cutting hyperplanes;   in this paper 

we approach this problem using a triangular canonical form.    In the first 

part we give an algorithm based on Gomory's all-integer integer program- 

ming algorithm    J ,   which constitutes a first step in this direction.     This 

procedure is a practical analog of a deepest cut method discussed in the 

second part of the paper.    In Appendix A,   a brief outline and flow diagram 

for the algorithm are given;   finally the algorithm and the deepest cut prob- 

lem are illustrated by examples in appendices B and C. 

We assume that we have at hand an integer program where all the 

coefficients and constant terms are integers.    The functional is to be 

maximized.    We write the problem in a parametric form due to Tucker: 

Maximize   x0    subject to   x.    integer,    j  = 0, . . . , n;      x.   >   0  , 

j    =    1, .... n;   and 

X0   = bo + coto     +Citi    + • • • • -^Vk 

(1) 
xl    =  bl    + »10*0    +alltl    +•••■+ alktk 

x      =  b      + a    .t- + a     , t,  +  ....+ a    , t-, m m        mO 0        mil mk k 

It will be convenient to assume that the above system has the property 

that if   Xn, x,, .... x       are non-negative integer variables then   tn, . .. , t, 

must also be non-negative integer variables.    We can guarantee this,   in 



general,  by adding the trivial relations    x.   - = t.f   i =  0, . . . , k.    In this 

case the problem will be of the form: 

Maximize   xQ   subject to   x.   non-negative integers, j = l,...,n; and 

x0 = b0 +    c0t0       + c1tl      + .  .   .   + cktk 

xl    = ^ * 
x2 = *! 

(!') 

xk+l    = '     ^ 

^k+Z   =   bk+2    + ^+20*0   + ^+21*1     + •   •   •   + ^+2^ 

x =   b + a   „t_        +   a   . t, + + a , t, n n nO 0 nil nk k 

If in this problem   b.   >  0,   i =  1, 2, . . . , n   and   c.   <  0   for   j = 0, 1, . . ., k 

the solution obtained by setting   tf.=t1  =...   = t,   = 0   is optimal. 

It can be assumed without loss of generality that for bounded problems 

the problem is in a dual feasible form,   such that   c.   < 0   for all   j.    A quite 

general method for accomplishing this is discussed in a paper by Dantzig, 

Ford and Fulkerson:   i 

Two Useful Operations 

We now describe two basic operations which will frequently be used: 

a)   The Cut:   Suppose 

(2) x.  = b. + a.-t- + a.-t,  + .   .   .   + a.^t. + .   .   .   + a., t, i        x        lO 0        il  1 ii i ik k 

is an equation of (1).    Let 
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J+ = |j : a.. > 0 i and        J"=     | j : aj.  < 0  l 

If   x.   is to be a non-negative variable we have the following: 

0  < x. = b. +    >    a..t. +      >     a..t.        <      b. +     >    a..t. 

+ - + jeJ jeJ jeJ 

If 

(3) r   =   b.    +     ^    ...t. 

JeJ+ 

then   T   is a non-negative integer valued variable.     Using (3) we could 

eliminate one of the   t's   appearing in (3),   say   t-   in (1) in favor of    T. 

If,   moreover,    a.. = 1    making the  substitution   t- = T - b,  -      / a..t. 
xi 6 J* i        Z^ lJ J 

JeJ+-{i} 

in (1) would leave the tableau in integers. 

x0 = b0 +   VO + • • •   + ci (^T - b.  -        2        aijtj  )   + • • •   + ^O^k 

JeJ+-{i} 

u(T-bi-     I 
J€J+-{i} 

x, = b, + a.-trt + . . .  + a, . ( T - b. -        )        a..t.    )+...+ a,, t, 1        1        10 0 It \ i Z, iJ J  y ik k 

x    = b    + a  „t- + . . .   + a   „    T - b.  -        ) a. .t,        + . . .  + a  . t. n        n        nO 0 nt \ i /, ij J   / nk k 

jeJ+.{i} 

If     a..   >      1, then 



b. r-~        a.. 
(3-) 

JeJ+ 

aii ^. aii J 

is still a non-negative integer variable where-b.   and   a.,     are the smallest 

integers greater than -b.   and   a.. ,   respectively,  which are divisible by 

a...,  where   (a.../a...) = (a../a..) = 1,   so if    a...   > 1,    we can use (31) and 

maintain the tableau in integers. 

To minimize the notation after the substitution we simply let T be 

represented by t. in the tableau. In general we only use the substitution 

(3) or (3') when   b.   <  0   and in this case call it a cut  because the restriction 

T >   0   restricts the values that   t- t,     can take on,   e.g.,   t» = t, = ...  = t,  =0 

is not a feasible  solution. 

b)    The Column Operation:    On the other hand if we define      T =   )   o-.t. , 
  Zl   J J 

j 
where   a-   are non-negative integer parameters and   a. = i,  and substitute 

J 

for   t-,   we are in fact performing a column operation, because formally the 
fVi 

substitution is equivalent to subtracting   a.    times the   i       column of coef- 

ficients of (1') from the   i       column of (1') for   i =0, l,...,i-l,i+l,...,k. 

We note that this is of the form of a cut with   b.   = 0.    The only thing we have 

to be careful about, in making these substitutions for cuts and column opera- 

tions is that the optimality condition for the transformed tableau is the same 

as for the original;   more specifically that   x,, . . . ,x     >  0   and integer 

implies that the current   t«, . . . , t,     are non-negative integer parameters. 

This is easy to verify remembering that the original tableau had this property 

and that each new parameter is a non-negative integer weighted sum of 
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II.    The Basic Algorithm 

Ralph Gomory's all-integer algorithm concerns itself basically with 

making  "cuts"   in a systematic fashion until a transformed tableau of 

integers is obtained from (1) with   c.   < 0,  (j = 0, . , . , k),  b.   > 0,   (i = 1, ... , n). 

The question is how to generate the most     efficient"   cuts in some sense. 

f2| Gomory has suggested1   J  that the efficiency may be related to the lexico- 

graphic magnitude of the pivot column in the sense that one should try to 

minimize the magnitude of the pivot column.     Whenever we attach adjectives 

such as   "best",   "efficient",   "deep"   to the word   "cut"   we will always mean 

it in this way. 

1.    The Algorithm. 

Suppose our problem is in the form: 

Maximize   x_   where   x. >   0,   (j =  l,...,n); and   x.   are integers (j =0,... , n) 

subject to 

x0       =b0       " ^ 

xl       =bl      +        a10t0 " h 

X2       ^ b2       + ^(^O + a21tl  " t2    . 

(5) 

''k+l  -bk+l + ak+l, 0*0 + ak+l, 1*1 + ^+1,2*2 +  Vt-l 

^+2 "bk-t2 + ak+2, 0*0 + ak+2, 1*1 + ^+2,2*2 +     +   ak+2,k+ltk+l 

x = b + a  ntn +        a   ^t,  + a   -.t^ + ....   + a , , .t, , , n n n0 0 nil n2 2 nk+1 k+1 

Then finding efficient cuts is relatively easy since the columns are already 

ordered lexicographically.    We seek a cut      r =  ß. +   y   a-t.     for which the 

j 
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last positive coefficient,  which determines the pivot column,  is as far to the 

left as possible.    This follows because we always insist on maintaining dual 

feasibility.    It is clear that the more  "efficient"  a cut,  the fewer columns 

(in general) will be affected by the pivoting.    With this criterion in mind we 

seek to generate the cuts.    We will see in the next section that every problem 

of the form (I1) and therefore of the form (1) can be put in the form (5). 

We can consider,   instead of a single equation,   a sum of equations 

weighted by positive integers to generate the cuts.    To each equation say the 
♦•Vi 

i    ,  with a negative constant term,  we associate a most efficient cut in the 

following sense: 

(i)   If 

(a) the coefficient of   t, .,a.   ,    ,   is positive we add   a.   ,    ,    times 

the k+1        equation to the i    ,   if this keeps the constant term 

b. + a.  v.. ib,    ,    negative,  we go to (ii).    If it makes the constant term 
1 X, .K+1    Ic-r 1 

non-negative then the original equation,   the i     ,   is associated with 

itself. 

(b) a.   .    .    is negative or zero we proceed directly to (ii). 

(ii)    We now have a new linear combination of the   t's   where the 

coefficient of   t,  , ,    is non-positive-    Next we examine the coefficient of k+1 r 

t,    which is   a.   ,   + a.   ,    .a,    ,   .    in case (a) or   a.   ,    in case (b).    As in 

(i), if the coefficient is negative or zero we go on to consider   t,     •■.    If this 

is not the case we add   a.   ,   + a.   ^ , i3^, i   ^   times the   k        equation if this 

keeps the constant term negative.    If it does not the current linear combina- 

tion is associated with the   i       equation, and we  stop. 

(iii)    We continue the process until either the constant term goes non- 

negative and the process terminates or until a positive integer weighted 
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combination of equations is obtained in which the coefficient of every 

t.,   (j ^  0)   is non-positive.    If one obtains an equation with all coefficients 

non-positive and with a negative constant term, there is no feasible solution. 

In this way,  we can associate to each equation with a negative constant term 

another derived equation.    We can then choose from the collection of 

derived equations the one for which the last positive coefficient is farthest 

to the left.    From this equation we generate the cut.    We then repeat the 

whole process with the new tableau. 

The convergence properties of this basic algorithm are closely 

connected to those of Gonnory's all-integer algorithm1-   J .    For completeness 

we review the proof.    Because of the special nature of the tableau there 

will always be a decrease in the constant term in some row above the 

highest row with a negative constant term.    This, plus the assumption that 

a feasible solution exists,  is enough to guarantee convergence.    To see this, 

we note that for each iteration we add a lexico-negative vector to the constant 

column,   so that the constant column is always decreasing lexicographically. 

If we indicate by a superscript the iteration numbers for the constant terms, 

we have for the constant term of the functional: 

K(0) .   , (1)  . .   Av)       , (v+l)  ^ .   K{optimal, feasible) 
D0    -    0     _  •' * _ D0     _ D0 _ • •'  _ D0 

where strict inequality can hold at most a finite number of times,   i. e. , 

there is a    VQ    such that   bg ' = bo for a11   v —   v0'    For if this were 

not so,   since   h\.       decreases by an integer each time,   we would have 

strict inequality and the functional value -would eventually become less than 

the functional value of the assumed feasible solution,  which is impossible 

since   x«   < b»       for every   v.    Now from   i/0   on we examine   bj     {v > Vn) 

They satisfy the condition   b^0+1) > b!.1/0+2)  >   ...     .    Suppose   b^   does 
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not   "settle down, "   i. e.,   suppose strict inequality does not hold at most a 

finite number of times,  then eventually   b,       becomes negative.    This is a 

contradiction for the cut generated at this point would cause a strict de- 

crease in   b-   which is impossible since    v >  i/0.    So after a finite number 

of iterations   v,    (^i'n)   both   b»   and   b.    have  "settled down."   Suppose 

b«, . . ., b-   ,  have settled down,   then if   b-   decreases indefinitely it eventually 

goes negative.    Then the cut generated at this point will imply a pivot on 

some column strictly to the left of the   i    .    In other words   b.   will decrease 

strictly for some   i  < i   which is a contradiction.    Since the number of   b's 

is finite,  the process terminates in a finite number of steps. 

2.    Basic Canonical Form. 

We show in this section that any problem of form (1) or equivalently 

(l1)   can be represented in form (5).    Assuming we have the problem 

already in form (I1) we get an equivalent basic canonical form (5) to (I1) by 

subtracting from the first row of the tableau an extra parameter   t,    ,,   and 

adding two extra equations; 

x n+1  ~ " 'k+l 

n+2 k+1 

Since   x   , ,    and   x   ,_    are required to be non-negative,    x   , , ,   x   .,, n+l n+2 ^ & '       n+1        n+2 

and   t,    ,    must all equal zero in any feasible solution.     We have then: 
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x0       =b0       + cOtO+ Cltl + + ^hc-^+l 

(6) 

xl       = S 

x2      = *!    . 

xk+l '■' ^ 

xk+2 = bk+2 + ak+2, 0*0 + ak+2, 1*1 + + ak+2, Ä 

x = b + a  „t.    + a   ,t,  + + a.t, n n nO 0 nil nkTc 

Xn+1  = " Vl-l 

Xn+2 = + ^+1 

We then perform the following changes of variables 

(7)     t.   w=t,ll-(l+cn)tr.-... -(1-c.   .)t.   .-c.t.-c.-t.,,-...   -c. t, J K+l    x 0' 0 j-r j-1      j j      j + 1 j + 1 kTc 

for   j = l,...,k+l      and 

new     .. t + f. 
0 k+l 0 0 j j k K 

The transformations of variables are legitimate because the   c.'s are 

strictly negative;  so,   all the coefficients in the above equations are positive 

or zero and the substitutions are column operations.    Performing these 

column operations we obtain the following form: 
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Max   x-       = b_ 

(8) 

xl       - l0 " .  . ll  ^ 

X^+Z = bk+2 + ak+2, 0*0 + ^+2, 1*1 + 

'   •   W 
+ ak+2,k+l*k+l 

Xn+2 " bn+2 + an+2, 0*0 + an+2, 1*1 + + an+2,k+l*k+l 

where for notational simplicity we do not distinguish typographically the 

transformed coefficients and parameters of (8) from the old ones in (6). 

To prove the equivalence of (8) and (6) it suffices to write down the inverse 

transformation.    In fact 

.new 

.new 

^ew 

.new 

.new 
•"k+l 

Tableau  (8) is a special case of the desired form (5) with the extra 

feature that the new   a..'s   and   b 's   are zero in the lower   left-hand 
ij J 

corner of the diagonal part of the matrix.    The method given above is a 

completely general method;   however the extra variables were added only 

to supply a coefficient of minus one in the functional.    If one already exists, 

say   d   = - 1,  the same transformations (7) will work with   k   replaced by k-1. 

The algorithm is illustrated by an example in Appendix B. 
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III.    Solving a Special Subproblem for the Deepest Cut 

We will now discuss a special problem with interesting properties, 

which constitutes the basis for the deepest cut algorithm described in this 

section. 

1.    The Deepest Cut Problem. 

Let us consider the following problem:    Find non-negative integers 

x(j ^ 0),  t.,  and maximize   x_ ,   subject to: 

x0 - bo - 'o 

xl = bl + aioto - h 
X2 

= b2 + a20t0 + ^zih 
(9) 

h 

^      =   bk     +      ^.o^-'     ^.l1^ +ak,k-lbk-l-tk 

^+1 = "bk+l " ^+1,0*0 " ak+l, 1*1 " ^.k-lVl + ^ 

where all the   b. (j ^  0)   and   a.,   are non-negative integers. 

It is not difficult to see that,  given this structure,  the lexico- 

minimum of all   t   vectors generating feasible   x's   is a solution to the 

problem.    In order to make more apparent some properties of this 

problem let us rewrite it for   k = 3. 

Find non-negative integers   x.(j ^ 0) ,   t.    and maximize   x_, 

subject to: 
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b0 = x0 + t0 

bl =             -»10*0 +xi   +       h 

(10)     b2 =                 " ^O'o ' a21tl   + x2 +         h 

h3=                 " ^O^ " a31tl             " a32t2 + x3 + t3 

x4       = -b4        " a^O " ^1*1             " ^izh            + t3 

An equivalent statement of this problem is to consider the last 

equation as the objective and find the lexico-min of all the vectors   t 

which make   x4   non-negative.     The solution of this problem is an optimal 

solution to the initial problem.    So,  we have then 

Objective:   x4 = -b4 - a40t0 - a^^ - a42t2 -  t3     . 

The first of the equations of the system (the original functional) is not really 

a constraint,   since   t-   may be increased as much as necessary to achieve 

primal feasibility.    In order to make   x4   feasible (keeping in mind that we 

are seeking the lexico-min vector   t),   we will first increase   t,    as much 

as possible,   keeping other   t.     variables at zero value.     This means,   with 

respect to the simplex method,   making   t-   and   x-,   x,,   x-   basic. 

If we did not succeed in reaching feasibility,   we would want then to 

increase   t,   keeping   t-    and   t,    at zero level if this can do some good, 

i. e. ,   if the coefficient of   t,   in the adjusted "objective" (x4)   is greater 

than zero. 

If increasing   t^   as much as possible,   (which is equivalent to 

introducing   t^   in the basis when using the simplex method) does not 

suffice to make   x4  >  0,   it means that there is no solution with   t- =t. =0. 

We then continue the process with   t,    and then with   t»    if necessary. 
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Performing these operations,  there will be some   j    such that making 
* 

t.   basic will yield a non-negative value for   x4   (the value of the adjusted 

objective).    This implies that there exist a solution to the problem with 

to'h = t.   ,   = 0,   t.   basic and assigning some values to basic 

t.   ,, t.   2» •••»*!, •    ^ut we are seeking the lexico-min vector   t   and in- 

creasing   t.   as far as possible is not necessarily required.    There may 
* 

exist a value,   say   t.,  less than the value which is assigned to   t.   when 

we make it basic,  which should suffice to make   x.    reach feasibility. 

(10) 
In the case where   k = 3        let     j = 1 

1)    We introduce   t-,   in the basis then the "adjusted objective" be- 

comes: 

(11)     x4 = x4 + x3 = (b3-b4) + (a30-a40)t0 + (a31-a41)t] + ^32 - a42)t2 - x3 

2)   Assume   b_  - b4  <  0 

If   a,, - a4?   is  >  0,  we then consider increasing the value of 

t2   and the new "adjusted objective"   will be the following linear combination 

X4 = ^a32 " a42)x2 + x3 + X4    " 

But let us  suppose for the sake of this discussion that   a,? - a42   <  0 . 

3.     We then consider increasing the value of   t,  (assuming 

a31 ~a41  = ^1   '*  <^'    Increasing   t,    as far as possible (or making it basic 

as in the  simplex method) gives the following adjusted cost form 

(12)     x4 = x4 + x3 + nix1 = (nib1 + b3 - b4) + (IIjajQ + a30 - a40)t0 - x1 

+ (a32 " a42)t2 " X3 * 

Let us now assume that   H.b,  + b,  - b4  >  0   that implies that giving 

to   t,    the value   b,.    This is sufficient to make   x,    reach feasibility. 
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But if we examine the relation (11) we see that it suffices to give to   t,    the 

value 

0*3 - bj 

1 - a41   J        1 

to make   x4   feasible. 

It is easy to see that the value   t,    is less than or equal to the value 

assigned to   t,    basic.    There   t,    is the minimum value for   t,    so that 

there exist a solution to our problem with   tn = 0;   this will assure us that 

t0 = 0 ,    t1 = t° ,    t2 = t° ,    t3 = t"   (to fix) 

is the lexico-min vector   t   which gives the solution of the  problem,   t? = 0 

because the coefficient of   t?   was never positive in the successive "adjusted 

cost forms." 

In order to determine the value of   t,   we fix   t« 

and modify our constant column accordingly. 

o, t1 = t°, t2 = t" = 0 

¥3 =b3 + a30 '  0 + a31tl +a32 '  0 

b4 =-b4- a40 .   0 - a41t1 + a42 .  0 

Repeating the same operations as described above,   it is not difficult to show 

that   t-,  = -b.  .    This method is illustrated in Appendix B by an example. 

Properties of the Deepest Cut Problem 

1.    The procedure suggested to solve the deepest cut problem is 

exactly the procedure used in the basic algorithm for generating cuts. 
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2. The procedure gives the best cut for the equations of the system, 

i. e.,   that given the criteria used for generating efficient cuts in the basic 

algorithm,   there is no better cut possible. 

3. The technique leads in a sequence of   k   steps to the solution. 

Each component of the vector   t   is considered once and only once to enter 

the basis,  i.e.,  if at iteration   v(< k + j+ 1)   the variable   t.   was not selected 

for entering the basis,  then for all the following iterations    i/+ 1,    i/ + 2, . • . 

it will never be considered again. 

In the case when   k= 3,   we have seen that if at iteration   v+Z,   t_   has 

a negative coefficient,  this coefficient always remains negative during the 

solution process,    t2   is never a candidate for entering the basis. 

4. It is possible to give an upper bound for the number of steps,   i. e., 

each variable   t   is considered only once for entering in the basis so the 

number of iterations depends only on the size of the system and is in fact at 

most   k. 

2.    The Deep Cut Algorithm. 

If rather than dealing with the basic canonical form we had the follow- 

ing revised form: 

Find non-negative integers   x.   and   t.    and maximize   x»    subject to 

xo     "   bo     " 'o 

xl       =    bl       + *()■.. *! ■  ■   .   .    . 

''k+i =  bk+i '    hs. ' ' VH 

"k+Z = bk+2 + ak+2;0 *() + ak+2. I1! + + ^+2, k+lhc+l ~ ^+2 

(13) 

nO        ^   + an. 1     tl + + an.k+l     hc+l  ' ^+2 x   =b   +a0   t^+a  ,  1,4- n      n 

Xn+3 ~ bn+3 + an+3, 0*0 + an+3, 1*1 + + ^+3^+1^+1 " ^+2 

Xn+4 = "bn+4 ' an+4, 0*0 ' an+4, ih +  " ^+4^+1^+1 + ^+2 
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where all the   a.,   and   b.   are positive (except   b0 ),  then a natural 

algorithm,   using the results of the last section,   suggests itself. 

In order to obtain the revised form,   starting from the basic canonical 

form (8), we subtract from the right-hand side of the equations 

Xk+2 ^ bk+2 + ^+2, 0*0 + ak+2, 1*1 + + ak+2Ik+ltk+l 
• • • • * 
• • • • " 
• • • * * 
Xn+2 = bn+2 + an+2, 0*0 + an+2, 1*1 + + an+2, k+^k+l 

a parameter   t,    , ,  and we add two equations 

xn+3 = ~ ha+Z 

xn+4 = + t!t+2 

which have the property that   t,    ,,  x     3,  x     .   must all be equal to zero 

in any feasible   solution. 

We then perform column operations in order to make the coefficient 

of   t«, t., t?, . . ., t,     .      positive (except for the coefficients which will 

appear in the last row   n+4).    The equation generating the column opera- 

tions has the form 

(14)     s^-ß^-ß^-ß^...   -ßjtj + ....   -/3k+1tk+1+tk+2 

where   ß. =    -[min   {a.. }]    i = k+2, k+3, .... n+2,    j = 1, 2, 3 k+ 1. 
J i 1J 

To fix   ß      we need some more information.    We want the coefficients 

of   t«   to be positive,  but we want also to determine the coefficients of   tn 

so that when we substitute   K« + t^   for   t«   (where   Kn   is an admissible 

value for   t0) the constant terms become non-negative. 
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We know (when dealing with a maximization problem) that the optimal 
o solution   (x- T _)   of the linear program is always greater than or equal to 

the optimal solution   (x» Tp)    of the same problem but where integral values 

have to be assigned to the variables. 

o .      o 
x0 LP   -   x0 IP 

but also 

0 LP 
>     o 
-     0 IP 

let   K„ -0 LP + b_    (initial.   b0) 

we have 

+ x, 0 IP - t; 

c 
c0 LP <   - b„ + 

'0    >    K0 

so   tn - K„ 4 t'.    This means that the  substitution   K,, + tL   for   t„    is a u u       u u       ü 0 

legitimate operation. 

To choose   /30   we will assure ourselves that the coefficients of   t-* 

become non-negative and also that when we perform the substitution (15), 

described above,   the constant term column will contain all non-negative 

components (except, the last one). 

ßp.  = max -{- mm     a,,,      ,    max 
i l0 i 

r b- 
-iO 

i = k+2.,. . ., n+4 

17- 



After performing the column operation generated by (14),  i.e.,   pivoting on 

t,  ,.,     we then add the cut k+2 

s = -K0 + t0 

and pivot on   t- 

This gives us the tableau (13),  which is equivalent to our initial problem 

with respect to the integer valued solution. 

The Algorithm 

The underlying procedure is equivalent to the basic algorithm method 

but in this case there is only one negative constant term,    b      ..    Each 

"subproblem" will contain 

1) the last row:   n+4 

2) one row of the set   k+2, . . ., n+2   (the row   n+3   is the opposite in 

sign of the row   n+4) 

3) the diagonal part of the tableau. 

This is exactly the structure of the deepest cut problem. 

To generate the best cut for each sub-problem we can use the method 

of the deepest cut problem. 

And among those cuts select the best one,   using the same criterion 

as for the basic algorithm. 

This algorithm can be used if, (1) the general problem can be brought 

into the necessary form, and (2) it can be maintained in this form throughout 

the pivot steps.    Both operations can be performed although the maintenance 

of non-negative coefficients below the diagonal does involve some number of 

column operations.    If we omit the maintenance of the non-negative coefficient, 

we have the basic algorithm discussed in the first part of the paper.    In that 

case,  we generate deep cuts but not the deepest cuts for the subproblems. 

-18- 
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APPENDIX  A 

In the following four figures a flow diagram for the basic algorithm is 

given.    Figure 1 tells us how to get the original problem in the form (1) into 

(5).    In Figure 2 we associate to each equation with a negative constant term 

a linear combination of equations in which the coefficients of the rightmost 

t's   have been made non-positive.    In Figure 3 we select the linear combina- 

tion for which the last positive term is furthest from the left,  and in Figure 

4 we actually perform the   "cut"  associated with this equation.    The algorithm 

consists of repeating steps 2-4 until all the constant terms are non-negative. 

1.    CANONICAL FORM 

No 

Add   -t,    ,    to 

functional and two 
equations: 

n+1 -t k+1 

n+Z k+1 

t! : 
J 

Yes 

Rearrange columns 

and rows     c,  = - 1 

Set   t.  = t!     where 
J       J 

^k+i-^^V--- - ^j-^j-rVrViV- ■Vk 

J      —     Uyaooy       iQ"!"      1 

Go   on   to 

2. "DERIVED EQUATION" 



2.    DERIVED EQUATIONS 

Yes1 

* 

"Oj = Cj 
aij - aij 

i =  1 n+ 2 

j = 0,..., k 

i   =    1 
j   =   K+ 1 

i=i + 1 

No 

j:= j - 1 

i:=i + 1 

No 

ß.: =ß, +a..ß. 

a.. - a. t + a. -Q-. 
li        li        ij  jl 

i = 0, . . . .   K + 1 



3.    BEST CUT 

Yes 

.•N. 

r.: = Max {j:d.. > 0 } 

Yes' i 

No 

J = r. 
i 

I  =  i 

i = i +  1 

i: = i + 1 

Yes 

o-r- - {least integer > o-..   which is 

divisible by   aTT } 

/?T =-{least integer > b.   divisible 

rzz 
by aij > 

ßr: = j3T / aT T a^.    =   0 

ali = ^Ij / ÖIJ 
j = j + 1 



4.    SUBSTITUTION 

'' 

i = 0 n + 2 

bi = bi " hlQiJ 

V 

i = 0, . . . , n+ 2;  j =0,. . ., 

cj = cj " ^Ij^OJ 

aij = aij "   "ifiJ 

k+ 2 

CJ    =   a0J 

aiJ = aiJ 

\ f 

Yes 

RETURN TO 2 

No 

TERMINATE 



APPENDIX B 

Basic Algorithm: 

The original problem 

Max   x^ = 10 - 2V • ti- h 
xl = 'o 
x2 = h 
x3 = h 
x4 = 26 + 'o- 3ti- 5t2 

x5 = -12 + t0+    t1+    t2 

Normally we use special methods to generate   a - 1   in the objective form 

but in this case this is not necessary. 

Make the substitutions 

new 2 
0 t2 0        1 

tneW    =   t    +    t    + t tl ^2 0        1 

.new 
t2+    'O 

we then obtain 

x0 = 

xl = 

x3 = 

10 

t0+    t 

26 + 6t0 - 9t 

-12 +    t 

+    t. 

2t. 

(S^ -15 + t0) 
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To simplify the problem we make use of a convenient device.    If we solve the 

problem without the integer constraints we get   Max   xn =   9/12 . u   Lp 

Since   xn the integer programming solution is maximized over a more uip 

restricted set   Max   xft       < Max   xn        .    Therefore,    Max   x-      < -5. 
UIP ~ ULP UIP - 

Since     xn = 10 - tn   to   > + 15.    This allows us to introduce the cut 

S,  = -15 + t0.    Doing the appropriate pivot (essentially   ^ : ='o " ^^ we 

obtain: 

Max     x« = 

x1 =     15 +    t- -    t 

x3 = -15 t0+    t 

x4 = 116 + 6t0 - 9t 

xc = -12 +      t 

-      t. 

+      t. 

2t. 

We now start using the procedure of the basic algorithm.    Beginning with 

x3 = -15  " ^^l +t2 

we make the rightmost positive coefficient zero by adding   x^ 

x2 + x3=  -15 -'O + 2tl 

If we try to eliminate the   t,    coefficient by adding   2X,    we obtain a non- 

negative constant term.     The last equation yields the cut 

>■, = -8 + t1 <=>   t1   > S1  . 
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Using xg = -12 + t, we try to eliminate t, but again the constant term goes 

non-negative so the best we can do is S? = -12 + t,. The latter cut is better 

so we introduce S, = -12 + t,. Completing the standard pivot operations our 

tableau becomes 

Max x0 = -5 - 'o 
x,  =    3 + to- t. 

x2 =  12 h"    h 
X3 = -3 - t0 + t1+    t2 

x4 -    8 + 6to- 9tl  " 2t2 

x5 = t. 

here we have only one equation with a negative constant term which implies 

the cut   S, = -3 + t.  + t?   making the substitution we obtain the optimal 

solution 

x0 = -5 - 'o 
x1 = 3 + to-   h 
x2 + 9 + 2t1 -    h 
x, + 0 - 'o +    h 
x4 = 2 + 6t0 - 7t1 -2t2 

x5 = 0 +   h 

If we did not use the linear programming solution to generate the first cut 

this cut would have been 

Sl=   -12+  ^ 

derived from the following linear combination:    x,  + x^.    The tableau then 

becomes: 
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x0 = 

x1 = 

x3 = 

X4 = 

12 +    tr 

-12 t0+    t 

98 + 6t0 - 9t 

x5 = =    -12 +    t 

our best following cut is:       S^ =   -12 + t,     derived from   x,. 

+    t. 

- 2t. 

It is not difficult to verify that no better cut is available.    We then 

obtain: 

xo =   -2 "   'o 

x2=     12 

to+  ti+  h 
x4 = -10 + 6t0 - gtl - 2t2 

x,  = +   t. 

We then get the following cuts 

S3 = -2 + t0 

84 = -2 + t1 + t2 

s5=-lft0 

S6:z-1 +tl+t2 

and obtain the same final tableau.    It is interesting to see that this re- 

quired 6 cuts where the previous method only required 3 cuts. 
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The Deepest Cut Problem: 

Find non-negative integers   x. {i = 1,2,3,4),    t. (j = 1,2,3),  and maximize   x0 

subject to: 
x0 =      3 "    *() 

"OBJ" 

Basic variables,      x«,   x.,  x_,  x3. 

xl = 1 + 'o - h 
x2 

= 3 + 2t0 + 2tl - 'z 
x3 = 8 + 3t, + 6t2- H 
X4 

_ -26 - 'o -12t, - 3t2 + H 

(a) We first ask is there a solution with   t0,t1,t? = 0 ?    Making   t, 

basic and increasing as far as we can to   t, = 8   we get   x4 = -18. 

Eliminating   t,   from "OBJ" we obtain 

x4 + X3 = -18 - t0 - 9tl + 3t2     . 

(b) Since   x4   with   tn,t,,t- = 0   is    = -18   we now allow   t? to become 

positive and require only that   t0,t.  = 0.    Making   t-   basic and 

eliminating from the   "adjusted OBJ"   we get 

x4 + x, + 3x2 = -9 + 5t0 - 3t, . 

(c) Since the coefficient of   t,    is negative in the current   "OBJ" 

introducing   t,    will only make the problem more infeasible. 

(d) Finally,  by making   t0  > 2   we can make the problem feasible. 

Since we want the lexico-minimum vector    t    we take    tn = 2. 
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The values of the rest of the variables can be determined whether by 

back substitution or by repeating the procedure with   t0   no longer a variable 

but fixed at  2,   e.g.,  next try to make   x4   feasible in 

xo = 1 

xl= 3 - 'l 

X2 = 9 + 2tl "    h 
x3 = 8 + 3t1 + 6t2 - 4 
x,  = -28 - 12t,  - 3t,  - t- 4 12        3 

Repeating the same process,  we can fix   t.;  then   t?,    t,    being fixed,   and 

so on. 

The complete solution is 

XQ-1 X.=3 X?=0 x,  =    7 x4 = 0 

t0 = 2 t1 = 0 t2 = 9 t3 = 55 . 

Practically one can affect each row of a multiplier 

T/J = l(OBJ),    v* = 1. TT^ - (a32 - a42) - (6-3) =  3. 

Tr| =   Max |(-12 + 3 + 3TT2 ) = -3,  0 T     =0. 

which remains always the same and may be considered to some extent as 

playing an identical rule to the simplex multipliers. 
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